

DA051010 5/10 MHz Distribution Amplifier

General Description

The DA051010 can be used to synchronize up to twelve instruments to a frequency reference input. The reference input frequency is 5 MHz and the output frequency is 10 MHz. The DA051010 incorporates AGC (automatic gain control) so that a 5 MHz input can be varied from -10 dBm to +20 dBm without the outputs changing by more than 0.4 dB. Inputs as low as -30 dBm still produce a useable output. The pure sinewave output (harmonics are 65 dB down) enables the DA051010 to work in the most demanding applications. The DA051010 can also accept an input frequency of 10 MHz.

Outputs

There are ten, 10 MHz, sinewave outputs. Each 10 MHz output is isolated from the input and each other. Therefore the reference oscillator connected to the DA051010 input is protected against load variations, short circuits etc. that may be applied to the outputs. Two additional squarewave outputs can be switched in frequency from 10 MHz, 5 MHz, 2 MHz, 1 MHz, 100 kHz and 1 Hz. These outputs are ideal for instruments that do not use a 10 MHz timebase. A rear slave output can be connected to a second DA051010 (or more) to give up to twenty-four outputs (or more). See "Applications" below.

Applications

The DA051010 5/10 MHz Distribution Amplifier is ideal for use in calibration or standard laboratories, radio repair workshops or production facilities. By using the rear slave output, many DA051010's can be connected together to give multiple outputs

Miscellaneous Information

The DA051010 is a highly reliable unit with an MTBF of over 30 years. The DA051010 is housed in a fully screened 19" rack mount case and operates from a 115 VAC or 230 VAC supply or external 12 V DC. The DA051010 is CE marked for sale within the EEC.

Options

The DA series can be modified upon special request to work at different frequencies than 10 MHz. For example the DA151510 accepts a 15 MHz input and has 15 MHz outputs. Other frequencies to 20 MHz can also be accommodated.

Option 01 is an Alarm Relay that is activated when the 5 MHz input signal is present. Two changeover relay contacts can be used to raise an alarm should the input signal or power be lost. Two logic outputs also show the alarm status. Option 02 is a redundancy option allowing two DA051010's to be operated in parallel giving a fully redundant output. A typical system consists of two Frequency Standards ("A" and "B") and two DA051010 distribution amplifiers ("A" and "B"). The system would have twenty redundant outputs. Normally the "A" pair will provide the 10 MHz output. In the

event of a failure of the Frequency Standard ("A") or DA051010 ("A"), the "B" system would automatically switch in and provide the 10 MHz output.

DAUSIUIU SPECIFICATIONS					
Specification Parameter	Specification	Comments			
2					
Frequency	5.000 MHz or 10.000 MHz	50Ω BNC Connector on rear panel			
Bandwidth (-3 dB) 5 MHz input	125 kHz				
Impedance	50 Ω				
Input VSWR	< 1.15 @ 5 MHz and 10 MHz				
Input Level	+20 dBm to -10 dBm	Output Changes by < 0.4 dB			
	Sinewave Outputs 1 to 10				
Output Waveform	Sinewave	50Ω BNC Connector on rear panel			
Output Frequency (5 MHz input)	Exactly twice the input frequency				
Output Frequency (10 MHz input)	Exactly the same as the input frequency				
Output VSWR	< 1.5:1 @ 10 MHz				
Output level (output 5,7,9,11,13)	From 0 dBm to +13 dBm	Each output internal adjustable			
Output level (output 4,6,8,10,12)	From 0 dBm to +10 dBm	Each output internal adjustable			
Harmonic Distortion at 10 MHz	-65 dBc	Output set to +10 dBm			
Jitter	< 2 ps rms				
5 MHz sub-harmonic rejection	-35 dBc	Sine Outputs 1,3,5,7,9			
5 MHz sub-harmonic rejection	-60 dBc	Sine Outputs 2,4,6,8,10			
Input to Output Isolation	> 100 dB	Typical@ 10 MHz			
	Squarewave Outputs 1 and 2				
Output Waveform	Squarewave	50Ω BNC Connector on rear panel			
Level	0 - 5V (open circuit) 0 - 2.7 V (50 Ω)	TTL Compatible			
Frequency	10,5,2,1 MHz, 100 kHz and 1 Hz	1 Hz = 1 pulse per second			
Risetime	< 30 ns	At 1 MHz			
	Slave Output				
Output Waveform	Sinewave $@ > -5 \text{ dBm}$	50Ω BNC Connector on rear panel			
	Phase Noise (Typical)				
At 10 Hz Offset	-127 dBc/Hz	Measurement uncertainty $\pm 4 \text{ dB}$			
	General				
Power (AC)	115 VAC or 230 VAC ± 10%	30 Watts max			
Power (DC)	11-13 VDC @ 1.3 Amps				
Size and weight	483 x 300 x 44 mm and 4.6 kg	Width x Depth x Height			
Ambient Operating Temperature	0°C to +40 °C				
	Options				
Option 01	Dual changeover alarm relay contacts	Plus two 8V logic alarm outputs			
Option 02	Redundancy	Requires two units			
Option 03	Internal Backup 10 MHz oscillator	Activated if input signal is lost			

DA051010 SPECIFICATIONS

Precision Test Systems			
Head Office - UK	South Africa	USA	Represented locally by:
Precision Test Systems LTD	Precision Test Systems cc	Precision Test Systems	
40 Holkham Avenue,	183 Edison Crescent	Suite # 981	
South Woodham Ferrers	Hennops Park X7	14781 Memorial Dr.	
Essex, CM3 7AU, England	Pretoria	Houston, TX 77079	
Tel: +44 (0) 845 052 0920	South Africa	Tel: 1 888 876 4804	
Fax: +44 (0) 870 135 4973	Tel: +27 (0) 12 653 5848	Fax: 1 413 410 1112	
Email: uksales@ptsyst.com	Email: sasales@ptsyst.com	Email: usasales@ptsyst.com	
Web: www.ptsyst.com	Web: www.ptsyst.com	Web: www.ptsyst.com	

Full specifications available from www.ptsyst.com. Specifications and features subject to change without notice (220805)